首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   2篇
  国内免费   2篇
  2021年   1篇
  2020年   2篇
  2018年   3篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2001年   2篇
  1998年   1篇
  1997年   1篇
  1991年   1篇
  1980年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
21.
In nature, animals must successfully respond to many simultaneous demands from their environment in order to survive and reproduce. We examined physiological and morphological responses of mice given three demands: intestinal parasite infection with Heligmosomoides polygyrus followed by caloric restriction (70% of ad libitum food intake versus ad libitum for 10 days) and/or cold exposure (5°C vs. 23°C for 10 days). We found significant interactions between these demands as well as independent effects. Small intestine structure and function changed with demands in both independent and interactive ways. Body mass decreased during caloric restriction and this decrease was greater for cold-exposed than warm-exposed mice. In ad libitum fed mice, body mass did not change with either cold exposure or parasite infection but body composition (fat versus lean mass of whole body or organs) changed with both demands. Generally, organ masses decreased with caloric restriction (even after accounting for body mass effects) and increased with cold exposure and parasite infection whereas fat mass decreased with both caloric restriction and parasite infection. Mass adjusted resting metabolic rate (RMR) increased with cold exposure, decreased with caloric restriction but, unlike previous studies with laboratory mice, did not change with parasite infection. Our results demonstrate that the ability of mice to respond to a demand is influenced by other concurrent demands and that mice show phenotypic plasticity of morphological and physiological features ranging from the tissue level to the level of the whole organism when given three simultaneous demands.  相似文献   
22.
以Karasek的工作要求一控制模型为分析框架,通过对三家企业219名员工的问卷调查,探讨工作属性与员工心理健康的关系。研究结果显示,工作属性中的工作要求、工作控制均与心理健康显著相关;在控制了人口统计学变量之后,二者所解释的心理健康方差变异量为7%;工作要求和工作控制的交互效应也能够有效预测心理健康。这些结果提示:工作要求过高和工作控制缺乏都会导致员工的心理健康下降,员工的心理健康是工作要求和工作控制共同作用的结果。  相似文献   
23.
Gametophytes of three Laminaria species occurring near Helgoland, North Sea, were cultivated 4 wk in a 12:12 LD regime at different temperatures in artificial light fields, and in the sea at different water depths. In the artificial light fields underwater spectral distribution was simulated according to Jerlov water Types 5, 7, 9. Blue light in the simulated light fields amounted to 17, 12 or 4% of total quanta. The rate of vegetative growth did not depend on spectral distribution, was light-saturated at 4–6 W · m?2, and increased with temperature up to 15 C. L. saccharina (L.) Lamour. exhibited the highest tolerance towards temperature, light and UV. Gametophytes survived 1 wk at 21 C ± 0.1, but not 22 C ± 0.1. Gametophytes of L. hyperborea (Gunn.) Fosl. and L. digitata (Huds.) Lamour. survived 1 wk at 20 C ± 0.1, but not at 21 C ± 0.1. In sunlight, and in the light field of a xenon lamp, 50% of L. saccharina gametophytes were killed by a quantum dose of 50 μEin · cm?2, and 100% of the plants by 90 μEin · cm?2. Approximately half of these quantum doses killed the corresponding percent of the other species gametophytes. Appreciably higher quantum doses were survived in visible light, with red being the most detrimental. Fertility depended on a critical quantum dose of blue light which decreased almost exponentially with decreasing temperature. The quantum dose (400–512 nm) required for induction of fertilization of 50% of the female gametophytes (males react similarly) was 90 μEin · cm?2 at 5 C, 110 μEin · cm?2 at 10 C, 230 (560 in L. digitata)μEin · cm?2 at 15 C, and 560 (L. hyperborea) or about 850 (other 2 species) μEin · cm?2 at 18 C. In the sea the gametophytes survived the dark winter months in the unicellular stage, with almost no vegetative growth of the primary cell, due to lack of light. In early spring the female gametophytes matured in the unicellular, and the males in a few-celled stage at the depth of 2 m, as did the laboratory cultures under conditions inducing maximal fertility.  相似文献   
24.
Training effects on plasma insulin-like growth factor-1 (IGF-1)/cortisol ratio were investigated in boxers. Thirty subjects were assigned to either the training or the control group (n = 15 in both). They were tested before the beginning of training (T0), after 5 weeks of intensive training (T1), and after 1 week of tapering (T2). Physical performances (Yo-Yo intermittent recovery test level-1), training loads, and blood sampling were obtained at T0, T1, and T2. Controls were only tested for biochemical and anthropometric parameters at T0 and T2. A significantly higher physical performance was observed at T2 compared to T1. At T1, cortisol levels were significantly increased whereas IGF-1 and insulin-like growth factor binding protein-3 (IGFBP-3) levels remained unchanged compared to baseline. At T2, cortisol levels decreased while IGF-1 and IGFBP-3 levels increased. The IGF-1/cortisol ratio decreased significantly at T1 and increased at T2, and its variations were significantly correlated with changes in training loads and Yo-Yo intermittent recovery test level 1 (IRT1) performance over the training period. Cortisol variations correlated with changes in training load (r = 0.64; p < 0.01) and Yo-Yo IRT1 performance (r = 0.78; p < 0.001) at T1 whereas IGF-1 variations correlated only with changes in Yo-Yo IRT1 performance at T2 (r = 0.71; p < 0.001). It is concluded that IGF-1/cortisol ratio could be a useful tool for monitoring training loads in young trained boxers.  相似文献   
25.
The demands of incubation and avian clutch size   总被引:5,自引:0,他引:5  
We reviewed information on the demands of incubation to examine whether these could influence the optimal clutch size of birds. The results indicate that appreciable metabolic costs of incubation commonly exist, and that the incubation of enlarged clutches can impose penalties on birds. In 23 studies on 19 species, incubation metabolic rate (IMR) was not elevated above the metabolic rate of resting non-incubating birds (RMR), but contrary to the physiological predictions of King and others, IMR was greater than RMR in 15 studies on 15 species. Across species, IMR was substantially above basal metabolic rate (BMR), averaging 1.606 × BMR. Of six studies on three species performed under thermo-neutral conditions, none found IMR to be in excess of RMR. IMRs measured exclusively within the thermo-neutral zone averaged only 1.08 × BMR contrasting with the significantly higher figure of 1.72 × BMR under wider conditions. 16 of 17 studies on procellariiforms found IMR below RMR, indicating a significant difference between this and other orders. We could find no other taxonomic, or ecological factors which had clear effects on IMR. Where clutch size was adjusted experimentally during incubation, larger clutches were associated with: significantly lower percentage hatching success in 11 of 19 studies; longer incubation periods in eight of ten studies; greater loss of adult body condition in two of five studies; and higher adult energy expenditure in eight of nine studies. Given that incubation does involve metabolic costs and given that the demands of incubation increase sufficiently with clutch size to affect breeding performance, we propose that the optimal clutch size of birds may in part by shaped by the number of eggs the parents can afford to incubate.  相似文献   
26.
Background, Aim and Scope The objective of this life cycle assessment (LCA) study is to develop LCA models for energy systems in order to assess the potential environmental impacts that might result from meeting energy demands in buildings. The scope of the study includes LCA models of the average electricity generation mix in the USA, a natural gas combined cycle (NGCC) power plant, a solid oxide fuel cell (SOFC) cogeneration system; a microturbine (MT) cogeneration system; an internal combustion engine (ICE) cogeneration system; and a gas boiler. Methods LCA is used to model energy systems and obtain the life cycle environmental indicators that might result when these systems are used to generate a unit energy output. The intended use of the LCA analysis is to investigate the operational characteristics of these systems while considering their potential environmental impacts to improve building design using a mixed integer linear programming (MILP) optimization model. Results The environmental impact categories chosen to assess the performance of the energy systems are global warming potential (GWP), acidification potential (AP), tropospheric ozone precursor potential (TOPP), and primary energy consumption (PE). These factors are obtained for the average electricity generation mix, the NGCC, the gas boiler, as well as for the cogeneration systems at different part load operation. The contribution of the major emissions to the emission factors is discussed. Discussion The analysis of the life cycle impact categories indicates that the electrical to thermal energy production ratio has a direct influence on the value of the life cycle PE consumption factors. Energy systems with high electrical to thermal ratios (such as the SOFC cogeneration systems and the NGCC power plant) have low PE consumption factors, whereas those with low electrical to thermal ratios (such as the MT cogeneration system) have high PE consumption factors. In the case of GWP, the values of the life cycle GWP obtained from the energy systems do not only depend on the efficiencies of the systems but also on the origins of emissions contributing to GWP. When evaluating the life cycle AP and TOPP, the types of fuel as well as the combustion characteristics of the energy systems are the main factors that influence the values of AP and TOPP. Conclusions An LCA study is performed to eraluate the life cycle emission factors of energy systems that can be used to meet the energy demand of buildings. Cogeneration systems produce utilizable thermal energy when used to meet a certain electrical demand which can make them an attractive alternative to conventional systems. The life cycle GWP, AP, TOPP and PE consumption factors are obtained for utility systems as well as cogeneration systems at different part load operation levels for the production of one kWh of energy output. Recommendations and Perspectives Although the emission factors vary for the different energy systems, they are not the only factors that influence the selection of the optimal system for building operations. The total efficiencies of the system play a significant part in the selection of the desirable technology. Other factors, such as the demand characteristics of a particular building, influence the selection of energy systems. The emission factors obtained from this LCA study are used as coefficients of decision variables in the formulation of an MILP to optimize the selection of energy systems based on environmental criteria by taking into consideration the system efficiencies, emission characteristics, part load operation, and building energy demands. Therefore, the emission factors should not be regarded as the only criteria for choosing the technology that could result in lower environmental impacts, but rather one of several factors that determine the selection of the optimum energy system. ESS-Submission Editor: Arpad Horvath (horvath@ce.berkeley.edu)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号